.
After more than 24,000 words it's time to come to the conclusions on a higher level, the level of force planning in general. I will try to avoid "fantasy fleet" writing, and I am aware that warships of frigate or destroyer size tend to be kept in service of the original user for about three decades regardless of their military utility in many of the later years.
Any whole (active) force conversion to a whole new concept would thus take about 35...40 years during peacetime, including the development and construction time for the first new paradigm warships.
Well, here are my two solutions to the challenges and requirements from the previous parts of this series:
The need for a strong helicopter component and the need for many standardised VLS cells have been obvious in the previous articles. Both needs are a continuation of conventional warship designs. A convoy with but two warships as escorts might need many more helicopters than any ASW frigate may hold, and the addition of AShM and (more) anti-submarine missiles into the VLS battery might require much more VLS cells than usual (even though ESSM may be quadpacked). So even these two conventional attributes may require much more deck area, volume and mass than any existing frigate provides for them (and together more than any destroyer has).
A requirement is in my opinion the operation of multiple surface drones in addition to at least two towed surface decoys. The surface drones need to be recovered, replenished and maintained and all of them should fit into or onto the warship during severe weather.
Provisions for two speedboats to be recovered over the stern would not suffice. A more radical approach - a well deck - might be required.
The face of the ideal dedicated GP warship for the 2020's and 2030's might thus be more similar to that of a LPD than a frigate's. The size could still be kept to about 6,000-8,000 tons (much smaller than actual LPDs). The hangars would suffice for four to eight AW101 while the well deck would suffice for at least two towed decoys and six lifeboats/decoys that might even be equipped as pickets for sea skimmer detection. The forecastle would look longer than a LPD's shape, providing deck area for a 60-90 cell VLS and a main gun. This dedicated GP warship would not need to be very fast; 17...20 kts transoceanic cruise speed and 24...27 kts top speed may suffice, and it should be able to quickly turn its stern to an incoming missile, for a hit (even repeated hits) there would be the least catastrophic. A 17...19 kts cruise speed would allow for near-continuous towed LFASS operation, while faster-moving convoys would require sprints followed by slower sonar operation times at 17...19 kts or less.
The Americans stand no chance to win a naval arms race with the PRC - the U.S. has almost no shipyard capacity left. There are three shipyards that build defective, overpriced ships for the government, some Great Lakes shipyards (maximum length of ships built there for oceanic use is 225.6 m) and some capacity for yacht building and Mexican Gulf oil industry specialist ships. The Chinese would win a naval arms race within a decade with their worldwide largest shipyard industry capacity if they meant to do so.
The Japanese shipyards might help the U.S., but the South Korean ones would almost certainly not, as taking part in such an arms race would put South Korea into Chinese crosshairs, and the only sensible strategy for South Korea in a U.S.-PRC conflict is to be largely neutral. The PRC's land power is simply too large and can't be neutralised with nuclear firepower because the PRC is a nuclear power with intercontinental reach itself. The U.S. could grow a shipyard industry for a naval arms race, but this would take almost certainly take longer in peacetime than the PRC would take to win said naval arms race.
The Europeans don't need to be concerned by this; neither the North Atlantic Treaty nor anything else compels them to face the Chinese. The Western Europeans should rather look at Russia, which makes delightfully little progress in its quest for navy modernisation.
The Russian government might nevertheless decide and succeed to build (and import) 30-50 SSI (U.S. DOD acronym: "SSP") submarines in the 2020's, and this would require a dissimilar response for European (European NATO or EU) security. Such a sub fleet could and would better not be "countered" by 30-50 SSIs of our own. It would require a defence for European shipping in coastal waters and on the Atlantic routes.
The Mediterranean Sea could be secured by sealing its three entry points (Strait of Gibraltar, Bosporus, Suez Canal) and by allowing hostile submarines in the Med to expend the one load of munitions that they have on decoys and actual civilian ships (there would be no replenishment for them). That's cheaper than a huge ASW effort for the whole Med, or for a sweep of it. The average civilian ship that's being sunk by a SSI would be worth less than € 100 million and the probability that such a naval war happens is so low that it makes no sense to spend dozens of billions every year to counter a scenario in which a dozen ships worth less than a total € 20 bn would be sunk. Those billions of Euros can be spent on saving lives for real, not just hypothetically. An ASW force for convoy security or sweeps in the Med would only begin to make sense if dozens hostile submarines were expected in the region in addition to the Atlantic Ocean.
The situation is very different regarding the transoceanic (transatlantic) routes, for these cannot be secured with land-based helicopters, drones, LFASS-towing boats, mining bottlenecks et cetera. One would need the AAW and ASW capabilities as well as some ASuW capability.
The defence of the maritime trade on these routes could not be area-focused as with secured coastal lanes/corridors. Some form of convoy system would be necessary. The existing navies talk as much about how they secure their nation's maritime trade as you let them time to talk, but they do in fact almost nothing about it for real. Not a single navy - including the large American, Chinese and Japanese ones - comes even close to being able to provide sufficient escorts for a general convoy system. The Chinese, Japanese and South Koreans are the only ones with enough shipyard capacity to even only justifiably dream of securing their transoceanic maritime trade against missile-armed submarines and helicopter-operating auxiliary cruisers. The European (and American) answer to the challenge - should it ever arise - has to make do without dozens if not hundreds of new dedicated warship hulls.
The needed electronics, helicopters and munitions could be produced in the needed quantities in two years if laws are being passed to prioritise such military orders over any civilian orders and the designs were already completed. A hundred or more fully self-defending convoys could be created per year using containerised modules that turn cargo ships (mostly medium-sized container ships) into auxiliary warships. The production bottleneck would likely be helicopters, which would compete with air force orders for production capacities in times of crisis. Such auxiliary warships would mostly use redundancy and dispersion of modules among the convoy for survivability of the convoy as a whole instead of trying to reduce the signatures and improve the ability to cope with hits of a much smaller dedicated warship hull. Neither a convoy with dedicated warships as escorts nor a self-defending convoy would be safe from losing ships, of course.
It's thus high time to create an ARAPAHO II program for AAW, ASW, VLS, CIWS, radar, towed decoys, towed sonar, decoy projection, command, crew quarters, supply storage, auxiliary power generation, helicopter hangar and helicopter landing pad modules based on standard 40 ft ISO containers. Sonar sets to be built into the already existing bulbous bows of container ships (with new cover, obviously) would be needed as well.
Sets for dozens of self-defending convoys and additionally CIWS and decoy sets for hundreds of coastal traffic cargo ships should be bought once there's a threat justifying such expense rising. Small quantities should be bought even without such a threat to test the concept and gain experience onboard small chartered container ships.
Navy bureaucracies have zero incentive to become storage administrators running inventory and function checks on thousands of containers. They want ship hulls to play with. They want to go cruise at sea. That's what a navy is all about in their opinion - regardless of whether this is a means to a reasonable end.
We need military bureaucracies that offer the most cost-efficient approach to satisfy deterrence and defence needs, not clubs of men who want to play with ships or boats at the taxpayer's expense. The outcome of European naval bureaucracies pursuing their self-interest is a combination of very high expenses and a de facto absent ability to secure maritime trade. We need the civilian masters of the naval bureaucracies to rein in and bring them on course to pursue the national interest over their bureaucratic self-interest, for the navies would never be able to do so or even only admit that they don't serve the national interest first and foremost. Without such an intervention we will simply keep wasting money for next to no benefits in return.
Any whole (active) force conversion to a whole new concept would thus take about 35...40 years during peacetime, including the development and construction time for the first new paradigm warships.
Well, here are my two solutions to the challenges and requirements from the previous parts of this series:
The dedicated warship,
rethought to exploit the naval technologies of today
The need for a strong helicopter component and the need for many standardised VLS cells have been obvious in the previous articles. Both needs are a continuation of conventional warship designs. A convoy with but two warships as escorts might need many more helicopters than any ASW frigate may hold, and the addition of AShM and (more) anti-submarine missiles into the VLS battery might require much more VLS cells than usual (even though ESSM may be quadpacked). So even these two conventional attributes may require much more deck area, volume and mass than any existing frigate provides for them (and together more than any destroyer has).
The closest real-world analogy and near-predecessor in concept: Italian helicopter cruiser Vittorio Veneto (7,500 t, 9 helicopters, area air defence, ASROC missiles, extremely powerful short range air defences) |
A requirement is in my opinion the operation of multiple surface drones in addition to at least two towed surface decoys. The surface drones need to be recovered, replenished and maintained and all of them should fit into or onto the warship during severe weather.
Provisions for two speedboats to be recovered over the stern would not suffice. A more radical approach - a well deck - might be required.
The face of the ideal dedicated GP warship for the 2020's and 2030's might thus be more similar to that of a LPD than a frigate's. The size could still be kept to about 6,000-8,000 tons (much smaller than actual LPDs). The hangars would suffice for four to eight AW101 while the well deck would suffice for at least two towed decoys and six lifeboats/decoys that might even be equipped as pickets for sea skimmer detection. The forecastle would look longer than a LPD's shape, providing deck area for a 60-90 cell VLS and a main gun. This dedicated GP warship would not need to be very fast; 17...20 kts transoceanic cruise speed and 24...27 kts top speed may suffice, and it should be able to quickly turn its stern to an incoming missile, for a hit (even repeated hits) there would be the least catastrophic. A 17...19 kts cruise speed would allow for near-continuous towed LFASS operation, while faster-moving convoys would require sprints followed by slower sonar operation times at 17...19 kts or less.
Chinese Yuzhao class LPD (seen from the most favourable angle) |
San Antonio class LPD, showing the well deck |
This is not quite a "mothership" idea because the word "mothership" suggests a certain imbalance: A mothership is the platform that provide endurance and range, while the smaller platforms that operate from it provide the real (and especially most offensive) combat power. An aircraft carrier is a mothership, an amphibious warfare ship would even fit - this concept is rather about towed and free-moving decoys (the latter possibly also serving as pickets) and the by now very conventional operation of helicopters. This is far from for example having a large docking ship as mothership (or rather fleet replenishment ship) to multiple coastal corvettes.
A pair of such dedicated warships should be capable of escorting a convoy on a transoceanic route out of range of hostile land-based strike fighters. Land-based air power and coastal forces would be required to assist in some areas due to the increased threat levels there (such as in range of Su-34, in difficult rather shallow waters where submarine detection is especially tricky and generally for protection against naval mines in lanes in front of ports).
A pair of such dedicated warships should be capable of escorting a convoy on a transoceanic route out of range of hostile land-based strike fighters. Land-based air power and coastal forces would be required to assist in some areas due to the increased threat levels there (such as in range of Su-34, in difficult rather shallow waters where submarine detection is especially tricky and generally for protection against naval mines in lanes in front of ports).
The auxiliary warship,
the only realistic hope when it comes to quantity
The Americans stand no chance to win a naval arms race with the PRC - the U.S. has almost no shipyard capacity left. There are three shipyards that build defective, overpriced ships for the government, some Great Lakes shipyards (maximum length of ships built there for oceanic use is 225.6 m) and some capacity for yacht building and Mexican Gulf oil industry specialist ships. The Chinese would win a naval arms race within a decade with their worldwide largest shipyard industry capacity if they meant to do so.
Most global shipbuilding stats have U.S. shipbuilding filed under "others". Civilian U.S. shipbuilding even ranks behind multiple European countries. |
The Japanese shipyards might help the U.S., but the South Korean ones would almost certainly not, as taking part in such an arms race would put South Korea into Chinese crosshairs, and the only sensible strategy for South Korea in a U.S.-PRC conflict is to be largely neutral. The PRC's land power is simply too large and can't be neutralised with nuclear firepower because the PRC is a nuclear power with intercontinental reach itself. The U.S. could grow a shipyard industry for a naval arms race, but this would take almost certainly take longer in peacetime than the PRC would take to win said naval arms race.
The Europeans don't need to be concerned by this; neither the North Atlantic Treaty nor anything else compels them to face the Chinese. The Western Europeans should rather look at Russia, which makes delightfully little progress in its quest for navy modernisation.
The Russian government might nevertheless decide and succeed to build (and import) 30-50 SSI (U.S. DOD acronym: "SSP") submarines in the 2020's, and this would require a dissimilar response for European (European NATO or EU) security. Such a sub fleet could and would better not be "countered" by 30-50 SSIs of our own. It would require a defence for European shipping in coastal waters and on the Atlantic routes.
The Mediterranean Sea could be secured by sealing its three entry points (Strait of Gibraltar, Bosporus, Suez Canal) and by allowing hostile submarines in the Med to expend the one load of munitions that they have on decoys and actual civilian ships (there would be no replenishment for them). That's cheaper than a huge ASW effort for the whole Med, or for a sweep of it. The average civilian ship that's being sunk by a SSI would be worth less than € 100 million and the probability that such a naval war happens is so low that it makes no sense to spend dozens of billions every year to counter a scenario in which a dozen ships worth less than a total € 20 bn would be sunk. Those billions of Euros can be spent on saving lives for real, not just hypothetically. An ASW force for convoy security or sweeps in the Med would only begin to make sense if dozens hostile submarines were expected in the region in addition to the Atlantic Ocean.
The situation is very different regarding the transoceanic (transatlantic) routes, for these cannot be secured with land-based helicopters, drones, LFASS-towing boats, mining bottlenecks et cetera. One would need the AAW and ASW capabilities as well as some ASuW capability.
The defence of the maritime trade on these routes could not be area-focused as with secured coastal lanes/corridors. Some form of convoy system would be necessary. The existing navies talk as much about how they secure their nation's maritime trade as you let them time to talk, but they do in fact almost nothing about it for real. Not a single navy - including the large American, Chinese and Japanese ones - comes even close to being able to provide sufficient escorts for a general convoy system. The Chinese, Japanese and South Koreans are the only ones with enough shipyard capacity to even only justifiably dream of securing their transoceanic maritime trade against missile-armed submarines and helicopter-operating auxiliary cruisers. The European (and American) answer to the challenge - should it ever arise - has to make do without dozens if not hundreds of new dedicated warship hulls.
The needed electronics, helicopters and munitions could be produced in the needed quantities in two years if laws are being passed to prioritise such military orders over any civilian orders and the designs were already completed. A hundred or more fully self-defending convoys could be created per year using containerised modules that turn cargo ships (mostly medium-sized container ships) into auxiliary warships. The production bottleneck would likely be helicopters, which would compete with air force orders for production capacities in times of crisis. Such auxiliary warships would mostly use redundancy and dispersion of modules among the convoy for survivability of the convoy as a whole instead of trying to reduce the signatures and improve the ability to cope with hits of a much smaller dedicated warship hull. Neither a convoy with dedicated warships as escorts nor a self-defending convoy would be safe from losing ships, of course.
It's thus high time to create an ARAPAHO II program for AAW, ASW, VLS, CIWS, radar, towed decoys, towed sonar, decoy projection, command, crew quarters, supply storage, auxiliary power generation, helicopter hangar and helicopter landing pad modules based on standard 40 ft ISO containers. Sonar sets to be built into the already existing bulbous bows of container ships (with new cover, obviously) would be needed as well.
plenty area, volume and payload is available for military purpose modules |
Sets for dozens of self-defending convoys and additionally CIWS and decoy sets for hundreds of coastal traffic cargo ships should be bought once there's a threat justifying such expense rising. Small quantities should be bought even without such a threat to test the concept and gain experience onboard small chartered container ships.
Navy bureaucracies have zero incentive to become storage administrators running inventory and function checks on thousands of containers. They want ship hulls to play with. They want to go cruise at sea. That's what a navy is all about in their opinion - regardless of whether this is a means to a reasonable end.
That's why the navies as we know them have to die.
We need military bureaucracies that offer the most cost-efficient approach to satisfy deterrence and defence needs, not clubs of men who want to play with ships or boats at the taxpayer's expense. The outcome of European naval bureaucracies pursuing their self-interest is a combination of very high expenses and a de facto absent ability to secure maritime trade. We need the civilian masters of the naval bureaucracies to rein in and bring them on course to pursue the national interest over their bureaucratic self-interest, for the navies would never be able to do so or even only admit that they don't serve the national interest first and foremost. Without such an intervention we will simply keep wasting money for next to no benefits in return.
- - - - -
My thanks go to those who were willing to help by previewing and criticising a part or multiple parts of the whole (none saw this conclusions part). I did not incorporate all their recommendations, so the blame would still be on me for any errors or poor conclusions. The following previewers were fine with being mentioned: TAS@verdigris_blog, Chuck Hill
S O
.
This comment has been removed by the author.
ReplyDeleteTo benefit of surface drones without being fixated on a small maximum size of boats employed. 10-20 years later one may prefer two large boats instead of lots of small ones.
DeleteI'm not thinking of LPD-sized well decks, of course.
This comment has been removed by the author.
DeleteI have really enjoyed this series of articles. Keep up the good work.
ReplyDeleteJust an observation but the ratio between the price of the sub and the ship it sinks becomes a lot more favourable if you factor in both the cost if its cargo and the cost to our economy and society of its not arriving.
ReplyDeleteFully kitted out ASW helos are themselves hideously expensive and putting 8 of them on an escort would mean even fewer escorts which would themselves become high value targets. Would it be possible to classify and localise a target enough from several relatively cheap LFA sonar equipped ships to deliver a homing torpedo by another cheaper means already described in the article.
One way around convoy defences would be to build a sub or drone with a crush depth greater than that of ASW torpedoes. It could release smsll torpedoes in protective ascending pressure capsules or suitably pressure hardened mobile mines in the path of a convoy.
An ASW screen for a convoy at slightly more than very effective HWT range is first and foremost a question of the quality and quantity of ASW helicopters in the air.
DeleteYou need to afford that quantity (and the resulting quantity of helos not in the air) anyway. What can be minimised then is the expense for warships. Larger warships are more cost-efficient and two of them is a minimum redundancy.
The auxiliary warship / self-escorting merchantmen convoy version is fiscally far superior, but you need peacetime training platforms anyway and some missions are better done by warships.
-----
The crush depth of good subs is greater than 300 m already. IIRC LWTs of 80's and later can go far deeper than that. The very small diameter of torpedoes and them not needing to sustain an underpressure for humans inside is such an advantage that manned subs can't gain any lasting advantage from going much deeper. The depths they can reach are enough to get below layers of the sea that complicate sonar operation and enough to diminish blast and avoid cavitation at useful speeds.
Just thinking around the practicalities of transatlantic etc convoys. In Ww2 individual ships were far smaller and the loss of one would be much less critical. You still have to Marshall convoys before they can sail. Even with no attacks taking place the act of marshalling causes significant attrition of capacity. It might be able to pull in ships from other trade routes to compensate. Then there is the issue of much of the capacity being flag of convenience and crewed by non US or EU nationals who may not want to sail under threat of attack. The owners might oppose Arapaho conversion etc. Once the convoy arrives individual ships would need to be escorted to their unloading locations the approaches to which may have been mined. Once there unloading would often be dependent on infrastructure that itself would be an easy target for cruise missiles, either directly or by attacking control centres or their electricity supplies. It's all a big can of worms really.
ReplyDeleteThe companies that own the ships are usually at home in NATO, and even if not an insurance scheme that compensates for loss as used before should be enough incentive. The legal details of mobilising the merchant marines would be different, but I think it could be done.
DeleteMy scheme is to secure teh Med by sealing it, securing a Oslo/Copenhagen-Gibraltar lane along the coast with coastal means (same along U.S. coasts) and whatever ships need to cross the Atlantic simply cruise to NY or Lissabon.
A couple container ships would only ferry the NY-Lissabon round tour because they would be equipped with many ARAPAHO II modules, while most others would only have decoys and at most some CIWS.
The can of worms is left alone in the corner by the really existing navies, all of them. They're either way too offensively-minded ((US, UK, FRA) or content with toying around with a tiny quantity of low capability frigates.
Joking aside, the loss of one Maersk Triple E headed for the UK would probably have significant repercussions for our economy.
DeleteThis comment has been removed by the author.
Delete@Chris
DeleteTo be in a war against Russia would make the loss of a hundred container ships appear insignificant.
@KRT
A close blockade would suffice at both Suez Canal and Bosporus. Nobody needs to be in control of either to seal the Med.
Also what is to stop an enemy sub waiting for weather conditions that preclude helicopter operations before launching an attack? AFAIK only the US and Italy in NATO still have AS standoff munitions in service and YOU pointed out has no mid course update datalink. Are standoff weapons also somewhat weather limited?
ReplyDeleteBad weather is bad for convoy defences and to a lesser degree for the sub as well (missiles cannot seakim, passive sonar a little troubled by more noise)
DeleteWhat I described (use of ASW missiles, ship-mounted sonars) is the best backup plan I know of for both threat submarine air defences and sea state 5+.
Sorry for the use of caps. I hate typing on the phone.
DeleteI'm mind boggled that, although the first 6000 TEU container ship was launched in 1996, there are now >18000 TEU container ships in existence.
ReplyDelete