.
I do sometimes still encounter some nostalgia regarding the long-gone 70's technology Gepard and Roland air defences of the German Heer and Stormer HVM vehicles of the British Army. The U.S.Army even brings some Avenger vehicles back into active service. Those are expressions of confidence in the SPAAG or the ManPADS approach to battlefield air defences.
I want to tell you that these are obsolete approaches. None of them address
the service ceiling issue satisfactorily, which is disqualifying in light of the PGM threat: Strike fighters are now very effective above the effective ceiling of such air defences (unless there's a cloud cover).
Such approaches don't come close to exploit the state of the art and aren't adapted to changed threat munitions (fire and forget missiles of attack helicopters and cheap glide bombs).
A rebuilt, modern battlefield air defence should be an area air defence network that protects spearhead forces from 'behind'* rather than with very short ranged air defences organic to the spearhead forces. Such battlefield air defences shouldn't even differ much from rear area air defences.
Before you read on I'd like to point out that battlefield air defences do not necessarily have the job to reduce hostile air power by attrition. Their primary job is to lessen the effect of hostile air power on friendly land forces and operations. This includes not only damage, killing and destruction, but also reconnaissance, observation and jamming. Air defences may also support land operations by informing ground forces about clear skies, and some battlefield air defences happen to have a secondary ground combat (usually self-defence) capability. Launchers for air defence missiles may very well be capable of launching drones or artillery rockets instead, air defence guns may very well be suitable as artillery or direct fire ground combat and radars have become amazingly multi-functional. Some radars with agile radio 'beams' can search for and track air targets, search for and track hostile artillery and mortar munitions, track friendly artillery munitions (giving info for correction of aim) and track meteorological balloons all at the same time within their field of view.
_ _ _ _ _
Here's a summary of my opinions on battlefield air defence for Europeans. It's finally all together after having written about details of the subject many times. I'll point out the hardware, as most of air defence is very dominated by the technology in use.
Saab Giraffe 4A as brigade radar; capable of detecting aircraft, missiles, careless helicopters, drones well above treetop height and firing positions of 60+ mm mortars, howitzers and multiple rocket launchers all within reasonable ranges. This would be the universal "brigade" radar, located in support groups rather than battalion battlegroups of (forces of manoeuvre).
The west is lacking a battlefield radar in L band or other long wavelength radar bands for low observable aircraft detection.
HAMMR as battlegroup radar; capable of the same jobs as Giraffe 4A, but at shorter ranges. Advantages: True 360° and on-the-move capability.
Giraffe 1X could be a substitute
if and only if it can function on the move as a matter of routine. It should also get a rotation symmetric antenna cover to be less striking visually.
This would be the organic radar of battalion battlegroups (forces of manoeuvre), so it has to be more mobile, capable of on-the-move operation, provide 360° service and be less conspicuous than the brigade radar.
AMRAAM-ER as anti-platform area defence missile (could also be
ESSM Blk II later on.
CAMM-ER could substitute, but it almost certainly lacks the kinematics to help with the air superiority fight at 50,000-55,000 ft, and battlefield air defences should do so occasionally).
This is what one would classically think of as air defence missile; a missile so expensive and capable that it's really meant to shoot down strike fighters and occasionally attack helicopters.
IRIS-T SLM or VL MICA IR as redundancy backup (IR guidance just in case radar guidance fails due to countermeasures).
This is a necessary redundancy (risk management measure) in light of the already extreme dependency on the tiny active radars of AMRAAM, MICA and Meteor (systemic technological risk). IR guidance has issues with the window heating up at high speed flight through dense atmospheres, so IRIS-T SLM has an ejectable protective nose cone to protect the window from friction until the missile needs to lock on.
Tamir (
Iron Dome's interceptor missile, costs less than 100,000 USD)
to deal with guided munitions (cruise missiles, glide bombs, loitering anti-radar missiles)
and medium to large drones.
The other missiles cost way too much even for the intercept of cruise missiles (which could be cheaper decoys, after all). Tamir may have troublesome requirements for quality of fire control information, but I suppose Giraffe 4A could pull it off.
ALAS-A for non-line of sight engagement against terrain-hugging attack helicopters (if need be based on
Helispot triangulation) with additional capacity as artillery counterfire munition. (The other anti-platform missiles could engage helicopters as well if only look down radar targeting info is available).
Fibre-optic guidance has issues especially over long distances, but it provides a man-in-the-loop capability even in most adverse electronic warfare environments. ALAS-A could be used to search for an attack helicopter whose approximate location was triangulated by infrasound only. It could even find and engage a helicopter that's static on the ground.
Any command post vehicle for battlefield air defence would need to be able to integrate such launchers, datalinks and preferably its emitting radio antennas hundreds of metres away. It would be great if a software-defined approach enabled to use some common land forces' battalion-level command post cabins for battlefield air defence after changing the software and adding the keys. Any attempt to realise such a versatile software-defined command post would bog down into a 20-year development program ruined by bureaucrats and lawyers, though.
Calibre .338 to 20 mm RCWS on many military motor vehicles with a 360°x90° passive near-24/7 search sensor, thermal sensor good enough for confirmation/identification and laser for rangefinding and IFF interrogation (response by IR strobe) - semi-automatic engagement mode for protection against small drones ranging from crawling/driving on the ground to about 1,500 m altitude.
20 mm is preferable because 20 mm HE shells can be self-destructing and thus there wouldn't thousands of lethal bullets rain down on the landscape after a couple RCWS opened fire on some low cost drone. The Nexter M621 is a reasonable gun for the purpose.
 |
There are 20 mm RCWS, but none so far are true anti-drone RCWS as far as I know. |
Early warning for everyone. Every single soldier can be aware of his or her position with satisfactory accuracy. This doesn't even require permanent GPS or Galileo services; an occasional calibration of a digital inertial navigation system would suffice. Radio technology has become so lightweight, compact and cheap that everyone could carry a personal radio with such an INS (infantry and scouts should have the most useful intra-squad personal radios anyway). Such a position-aware software-defined radio could issue an alert when artillery strikes are incoming and alerts about NBC threats or air attack (or observation) threats.
This awareness about relevant threats that are known to friendly forces could greatly enhance the survivability of the ground forces. They could hide temporarily, take cover, cease emissions, use NBC equipment, and even prepare for hard kill defence (against low level drones).
This benefit depends a lot on effective radio comm, which would be available most of the time, and especially so for 'rear area' support troops.
This should be the mix for battlefield air defences as of today.
Yes, it would be damn expensive. Some of those missiles cost almost € 2 million per piece. But even the most expensive fighter fleets could not fully substitute for such battlefield air defences.
A reminder: Even back in the 70's a single SPAAG did cost roughly three times as much as a MBT. Quality air defences were never cheap. You need to structure the land forces to your needs; perfect battlefield air defences would be too expensive, but too few could lead to horrific avoidable losses and setbacks of the land (and air!) forces.
Further characteristics for an ideal battlefield air defence:
- Common missile launcher with rocket artillery (the latter is in Europe mostly reduced to launching PGMs anyway) mostly as a quick change pallet on a standard 15 ton 8x8 flat bed or MULTI/EPLS lorry.
- Common radar with artillery (artillery needs no separate radar except maybe for ground and impact observation purposes**).
- Integration in air war LINK-16 datalink.
- No battery organisation, but a corps-wide air defence network (radio and fibreglass landline datalinks).
- Encryption by one-time pads if possible, alternatively 256 bit keys.
I do not consider SRBMs (short range ballistic missiles) with cluster munitions to be a threat that requires extra countermeasures on the battlefield. The low end of ballistic threats could be countered by the Tamir munition (if not even SPGs in C-RAM mode) if they enter the defence footprint and the high end SRBMs are rather too expensive for mere cluster munitions delivery unless our forces stupidly and unnecessarily expose themselves as high density area targets.***
- - - - -
Rear area (not "battlefield") air defences should have some BMD component (dedicated upward-looking radar with suitable wavelengths, Patriot PAC-3 or other dedicated interceptor missile against Iskander-ish threat missiles) instead of the anti-attack helicopter component.****
Rear area air defences would protect corps HQ, road bridges, airbases, logistical hubs (kinda railheads, but I expect roads to be the dominating supply route infrastructure instead of rails) and capitals in the theatre of war (Warsaw, for example) in wartime. There's little reason to count on them as defence against strategic surprise attacks, though.
Quite the contrary: The battlefield and rear area air defences themselves would offer many high value targets (radars, missiles, command posts) that would be promising targets for a strategic surprise attack with ballistic and cruise missiles. Their exact peacetime location must thus be a well-kept secret (which means near-daily change of garages used by the vehicles) or they must be in really, really well-fortified bunkers that de facto cannot have all their exits blocked.
There are two battlefield air defence exceptions:
(1) Very "far forward" forces such as company-sized raiding elements or armoured recce platoons would have to leave such an air defence support umbrella and they couldn't have much air defence themselves. They could thus limit themselves to having organic passive early warning capacity (passive IR air search sensor such as
Rheinmetall FIRST, infrasound-based helicopter detector
Helispot) to survive hostile air power by hiding in time. The backup plan would be very short ranged air defences (high elevation guns up to 76 mm calibre, ManPADS). Their defence against drones would be the same RCWS tech as mentioned before. The larger raiding forces might also add a few missiles (such as IRIS-T SLM) so they can harass hostile air power (combat aviation close to airbases, transport and utility helicopters) but this would be a luxury.
(2) "Low budget" land forces and very small size land forces couldn't afford the whole battlefield air defence umbrella. They could still afford a minimum of robust ManPADS (such as RBS 70 NG with Bolide missile) for below-clouds defences, but this would not be a necessity as such "low budget" brigades and battlegroups should operate under the area air defence 'umbrella' of an allied and more lavishly funded armed service.
Anti-drone RCWS are still a necessity. At least some very survivable passive sensors (Rheinmetall FIRST, Helispot) and datalink connectivity are a necessity if the allied air defences cannot rely on target data from allied air power (AEW, fighters). A partial radar equipment (battlegroup radar) could make sense, but would be quite expensive (thus rather not HAMMR or Giraffe 4A).
- - - - -
Now let's talk about vulnerabilities: The need to reach high with hard kill air defences requires large missiles that then happen to have long ranges at least at lower altitudes. For manoeuvre forces to dispense with the burden of organic air defences requires the use of area air defences (again, large missiles) to still keep the manoeuvre elements covered. All this leads to what's fashionably called "network centric" air defence. It's no more about one AFV carrying a search radar, a fire control radar and armament to independently sense and destroy an air threat (the concept of the Gepard SPAAG). The dispersion of the air defence network's parts to many different vehicles leads to a demand for decentralised electrical power supply (no more central generators as in SPAAGs or old school SAM batteries) and a dependence on communication (data) links. These data links would overwhelmingly be radio links, and they could be disrupted at least temporarily and locally. Some jamming-proof means of data transmission can be used (such as fibre optic cables, and potentially laser communication), and redundancy (HF AND SatCom instead of but one) could help alleviate the rest of the problem. Radio datalink reliability is a general problem of high tech armed forces.
Another vulnerability is in the stationary operation of the Giraffe 4A radar, albeit this is utterly commonplace. Airborne radar support may furthermore be pushed back by hostile fighter threats, which reduces such air force support just as air force fighter cover to a likely intermittent support.
There's one more thing to mention, but it's more about theatre operations and air superiority than about battlefield air defence or rear area object defences:
SM-6 missiles could be used to intervene in the air superiority fight or push hostile tanker and AEW aircraft far back, also deny access to hostile transport aircraft in hundreds of km radius. Such SM-6 launchers would not really need to be integrated with the battlefield air defences; they would rather be a rare asset that's posing a latent threat and headache to the opposing air forces' leadership ('fleet-in-being' effect). 100 such missiles on 25 datalink-equipped semi-trailers under central air war command & control could suffice to achieve this effect in Eastern Europe.
related:
So now you can nail me down on this if any of these items or underlying methods prove to be a failure or dead end in the future.
S O
defence_and_freedom@gmx.de
*: This isn't literally "behind". I'm thinking of support elements with self-defence capability (support groups) providing support to manoeuvre elements (battalion battlegroups). The greater the radius of the 'umbrella of support', the more lean, agile and freely manoeuvring the manoeuvre combat forces may be. So this is far from a linear front line doctrine's idea of "behind".
**: And I think those should be operating on the move, using the Hovermast approach.
***: Such as the classic traffic jams ahead of a crossroad or bottleneck, or a too compact bivouac.
****: A defence against longer-ranged ballistic missiles isn't necessary;
those would likely be nuclear-tipped anyway, and to undermine such
strategic nuclear deterrence is expensive, but not wise. Our protection
against such missiles are our (British and French) equivalent missiles.
.